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Nylon-6/rubber blends 
Part III Stresses in and around rubber particles and cavities 
in a nylon matrix 

K. D I J K S T R A * ,  G. H. TEN BOLSCHER 
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands 

The stress field around a rubber particle and a cavitated particle in a nylon/rubber blend has 
been studied using an analytical and a finite element approach. Attention was paid to the 
influence of the mechanical properties of the dispersed phase and the applied stress state. The 
results show that the choice of the bulk modulus of the elastomer is crucial. It appeared that 
especially with a triaxial stress, the Von Mises stress increased strongly upon cavitation (a more 
than five-fold increase close to the particle) while the hydrostatic stress only increased slightly. 
Also, the stresses in particles in the neighbourhood of a cavity have been calculated. Stresses in 
particles lying in or close to the equatorial plane of the cavity were higher than stresses in the other 
particles. Therefore, propagation of cavitation is most likely to occur perpendicular to the applied 
stress. 

1. I n t r o d u c t i o n  
When blending a soft elastomeric material into a rigid 
nylon matrix, it is expected that the mechanics of the 
resulting system will differ from that of the pure nylon. 
Because the onset of deformation processes such as 
shearbanding or crazing is dependent on the internal 
stresses, it is necessary to understand the way in which 
the second phase affects the mechanics of the blend. 
The stress state (uniaxial, as in a tensile test, or highly 
triaxial which will be the case ahead of a notch), the 
properties of the rubber and the morphology may all 
be important. 

Calculations have been made concerning the stress 
field around a rubber particle in a nylon matrix. Be- 
cause it is now generally believed that cavitation of the 
rubber phase is a necessary step in the fracture process 
of nylon/rubber blends [1-5], the influence of cavita- 
tion on the internal stresses has also been calculated. 
The first part of this paper concerns blends with a low 
rubber content, so that particles can be considered to 
be isolated inclusions. The stress field around an inclu- 
sion was calculated analytically as a function of rub- 
ber properties and applied stress state. 

In the second part, predictions are made of the 
interaction of stress fields of neighbouring particles at 
higher volume fractions of impact modifier. Because it 
has not been possible to derive an analytical solution 
for these multi-particle systems, a finite element ana- 
lysis has been used to calculate the stresses and dis- 
placements around the particles. Also in this part, 
attention is paid to the influence of the mechanical 
properties of the rubber and the applied stress state. 

* P r e s e n t  address:  DSM Research, P.O. Box 18, 6160 M D  Geleen, 

2. Stresses in and around an isolated 
elastic inclusion 

The solutions of the stress and displacement field 
around a spherical or cylindrical elastic inclusion in an 
elastic matrix, subjected to a uniform uniaxial tensile 
stress far way from the inclusion, were obtained by 
Goodier in 1933 [6]. Following his analysis, the stres- 
ses and displacements in and around a rubber inclu- 
sion subjected to a given biaxial stress far away from 
the inclusion are calculated. 

Consider an infinite cylindrical inclusion in an elas- 
tic matrix under plane strain conditions (see Fig. 1). 
Goodier gives the following set .of equations for the 
stress and displacement concentration in and around 
the inclusion (Equation 1). The elastic constants in 
Equation 1 are distinguished by subscript 1 for the 
matrix and subscript 2 for the inclusion. 

Outside the inclusion (r >~ a) 
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Figure 1 A cylindrical inclusion in an infinite elastic matrix sub- 
jected to a biaxial stress. 

Inside the inclusion (r ~< a) 

l , / r2  = Fr + (Gr + 2v2Hra)cos20 

Uo2 = - [Gr + ( 3 -  2v2)Hra]sin20 

0.,~2 = 2G2 _ (lb) 

0"o02 = 2 G z [ 1 - ~ 2 - ( G +  6Hr2)cos20] 

~,o2 - 2G2(G + 3Hr2)sin20 

A uniform biaxial stress in an undisturbed system 
gives the following displacements and stresses (Equa- 
tion 2). 

r 
uro~ -- 4Gl[(~y + 0.x)(1 -- 2vl) 

+ (% - ~Acos20] 
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(2) 1 1 
0. .~  = 5(% + 0.x) + 5(% - 0.~)cos20 

1 1 
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When the stresses and displacements at the boundary 
(r = a) are equated, the constants A, B, C for the 
matrix and F, G, H for the dispersed phase can be 
calculated. The resulting constants are given in Equa- 
tion 3. When the stress in the x-direction is set to zero, 
the solution reduces to the one given by Goodier. It is 
possible now to calculate the stresses in the complete 
system when the elastic constants of matrix and inclu- 
sion and the stress state far away from the inclusion 
are known. Inherent in the solutions is that they are 
only valid for isolated inclusions, i.e. for low volume 
fractions of the dispersed phase. At high volume frac- 
tions of the dispersed phase interaction between stress 
fields of neighbouring particles will make it impossible 
to use this kind of analysis. 
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When calculations of this kind are carried out, it 
appears that due to the high Poisson's ratio of the 
elastomer (v2 is close to 0,5), also under uniaxial load- 
ing the stress state inside the inclusion is almost per- 
fectly hydrostatic. Therefore, the bulk modulus of the 
rubber will control the stresses inside the inclusion 
and consequently the stress concentration in the 
matrix. This is demonstrated in Fig. 2 where the hy- 
drostatic stress (the first invariant of the stress tensor) 
is plotted versus the bulk modulus of the rubber. 
Varying the shear modulus over two decades from 
1-100 MPa (typical values for the rubbers used) while 
keeping the bulk modulus constant, has no effect on 
the magnitude of the internal stresses in the inclusion. 
Only when the shear modulus of the inclusion is close 
to the shear modulus of the matrix is a minor decrease 
in the hydrostatic tension observed. 

When calculating the bulk modulus from the 
Young's modulus and the Poisson's ratio, the cal- 
culated bulk modulus will be very sensitive to the 
Poisson's ratio when the latter is close to 0.5. It was 
demonstrated by Narisawa et al. [7] that the stress 
concentration around a particle was strongly depend- 
ent on the Poisson's ratio in that region. 

It is general knowledge that the bulk moduli for 
most polymers are of the same order of magnitude, 
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Figure 2 Hydrostatic stress in the inclusion subjected to a uniaxial 
stress divided by the applied remote stress versus the bulk modulus  
of the dispersed phase for different shear moduli  of the dispersed 
phase: G2 (MPa): (&) 1, ( + ) 10, ( x ) 100, ( �9 500, (&) 1000. Matrix 
properties are E1 = 2.82 GPa,  vl = 0.41. K~ = 5100 MPa.  
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despite the fact that the Young's moduli can vary over 
some decades. Van Krevelen [-8] gives values between 
2.0 GPa  (natural rubber) and 7.4 GPa  (phenol form- 
aldehyde resin). For nylon-6, a value is reported of 
5.1 GPa. The bulk modulus of most elastomers is 
a little lower (between 2.0 and 3.5 GPa) [-8]. Therefore, 
in all the calculations presented here (the analytical as 
well as the numerical calculations), the bulk modulus 
is chosen according to reported values in the literature 
and the Poisson's ratio is calculated from the shear 
modulus and the bulk modulus. 

When the hydrostatic and the Von Mises stress in 
inclusion and matrix are plotted (Fig. 3) for two very 
different types of impact modifiers (an LDPE and 
a poly(butadiene)-like material) it is clear that the 
external stress field is more or less the same for both 
materials. Although there is a tendency that the stres- 
ses around a very soft inclusion are somewhat higher 
(especially the Von Mises stress) than those around 
a stiffer particle, these differences are too small to 

explain the observed large differences in impact beha- 
viour [3, 9]. 

In Fig. 4, the influence of cavitation on the hydro- 
static and the Von Mises stress are given. In both 
cases, the hydrostatic stress does not change upon 
cavitation in the equatorial plane. Under a uniaxial 
load, there is a moderate increase in the Von Mises 
stress after cavitation. However, under a biaxial load 
there is a more than five-fold increase in the Von 
Mises stress around the particle after cavitation. This 
indicates that indeed cavitation is necessary for large 
scale yielding ahead of a notch or a running crack. 

So far, only data have been presented of stresses in 
the equatorial plane. In Fig. 5, the hydrostatic stress 
and the Von Mises stress around the particle are given 
as a function of the angle 0. The Von Mises stress 
shows maxima at the equator and at the pole. Before 
cavitation, the maximum at the equator is slightly 
higher than that at the pole. However, after cavitation 
yielding will preferentially start at lhe equator of the 
inclusion. 
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Figure 3 Stresses in the equatorial plane (0 = re/2) relative to ~r for 
different rubber properties: BR, G2 = 1 MPa,  K2 = 2500 MPa, (O) 
Von Mises stress, (�9 hydrostatic stress; LDPE, G2 = 100 MPa,  
K 2 = 3500 MPa,  (A) Von Mises stress, (A)  hydrostatic stress. (-- -) 
Stressesin the undisturbed geometry. Elastic constants of the matrix: 
G1 = 1000 MPa,  K I  = 5100 MPa. (a) Uniaxial tension (cr~ = 0). 
(b) biaxial terision (crx = ~r)- 
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Figure 4 Stresses in the equatorial plane (0 = rt/2) relative to 
c~r ( 0 ,  A) before and (�9 ~ )  after cavitation: (O, (3) Von Mises 
stress, (A,  A) hydrostatic stress. (---) Stresses in the undisturbed 
geometry. Elastic constants used: matrix G1 = 1000 MPa,  
K1 = 5 1 0 0 M P a ;  inclusion G2 = t MPa,  K 2 = 2 5 0 0 M P a .  (a) 
Uniaxial tension (r = 0), (b) biaxial tension (or:, = %). 
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Figure 5 Stresses around a uniaxially loaded inclusion (r/a = 1) 
relative to oy (O, A) before and (Q, ~ )  after cavitation: ( 0 ,  Q) Von 
Mises stress; ( 0 )  before cavitation, (O) after cavitation; hydrostatic 
stress: (A) before cavitation, (A) after cavitation. Elastic constants 
used: matrix G1 = 1000 MPa, K1 = 5100 MPa; inclusion G2 = 
1 MPa, K 2 = 2500 MPa. 

It is well known that the stresses at the pole of a soft 
inclusion are compressive. This is demonstrated in 
Fig. 5 by the negative hydrostatic stress at 0 --= 0. Sur- 
prisingly, the hydrostatic stress does not change upon 
cavitation. Apparently, a change in the radial stress is 
accompanied by an equal but opposite change in the 
tangential stress. 

3. Stress distribution in multiple 
particle systems 

With higher rubber contents, stress fields around 
neighbouring particles start to overlap. An often used 
criterion for stress-field overlap is that the distance 
between particles should be smaller than the diameter 
of the particles. This means that the rubber volume 
fraction should be larger than 0.085. Because most 
commercial toughened nylons have a rubber volume 
fraction between 0.15 and 0.30, it is evident that inter- 
action between stress fields will take place in these 
materials. Therefore, the stress and strain distribution 
no longer can be calculated analytically and has to be 
approximated using a finite element analysis. 

When modelling a two-phase system such as a ny- 
lon/rubber blend, a number of problems is encoun- 
tered. The first problem is that it will not be possible to 
model a blend with a large number of randomly dis- 
tributed particles. Therefore, the particles are norm- 
ally thought to be arranged in a regular way (e.g. 
a cubic array, a B C C stacking, etc.). Using the sym- 
metry in particle arrangement, multi-particle systems 
can then be modelled with only one or a few particles. 
The disadvantage of the approximation using a regu- 
lar distribution is the concentration of rubber in layers 
in this model. The effective matrix surface in these 
layers will be smaller than when calculated using 
a random distribution [10]. Therefore, the calculated 
stresses in these layers will be too high. 

Another problem is that the computers and soft- 
ware normally available are not powerful enough to 
handle a complex three-dimensional analysis. If the 
system is symmetrical about an axis, this symmetry 
can be used to reduce the three-dimensional system to 
a two-dimensional system without loss of accuracy. 
When this is not the case, the stresses and strains can 
be calculated in a two-dimensional system by assum- 
ing plane stress or plane strain, though the solutions 
derived from these models are not necessarily repres- 
entative for the system. 

In the literature, solutions of both types are found. 
Guild and Young [11] modelled an epoxy/rubber 
system under a uniaxial load with an axial-symmetric 
FEM model and varying rubber contents. They in- 
deed found a significant overlap of stress fields with an 
interparticle distance smaller than the particle size. 
Their calculations only showed a small increase in 
stress concentration after cavitation, which led to the 
conclusion that a rubber particle is, from a mechanical 
viewpoint, identical to a void. The rubber properties 
they used in their model, though, had a bulk modulus 
of about a factor of 30 below realistic values. Because 
in the previous paragraph it was concluded that in 
a two-dimensional plane-strain system cavitation 
leads, also with uniaxial loading, to a significant in- 
crease in the Von Mises stress, the analytical solution 
of Goodier for a two-dimensional system with axial 
symmetry is compared in Fig. 6 with the two-dimen- 
sion plane-strain solution using the rubber properties 
of Guild and Young. In this figure the solutions are 
also given for a nylon/rubber blend using a rubber 
with the same Young's modulus as the rubber used by 
Guild and Young but now with a more realistic bulk 
modulus of 2000 MPa. It is clear that the material 
with the low bulk modulus is in both cases, identical to 
a void. When the bulk modulus is set to a correct 
value, and also when using the axial symmetry, cavita- 
tion does not exert much influence on the Von Mises 
stress in the matrix. For the plane strain model, how- 
ever, there now is a significant increase in the Von 
Mises stress. This can be explained by the fact that the 
stresses in the plane-strain situation are more triaxial 
than those in the axially symmetric case and that, 
therefore, the rubber phase will carry a higher stress. It 
can be expected that under biaxial loading these differ- 
ences between the two types of solutions are much 
smaller because then in both cases the stress state is 
highly triaxial. 

Fukui et  al. [12] used a simplified two-dimensional 
plane-strain model with five particles arranged in a cu- 
bic array, loaded under an angle of 45 ~ to the cell axis. 
A similar, but more accurate, model was employed by 
Huang and Kinloch [13]. The bulk modulus of the 
dispersed phase used in both studies (165 and 
33.3 MPa, respectively) was too low to expect a signifi- 
cant difference between a voided and a rubber-filled 
system. Also, the models were loaded uniaxially, so the 
authors concluded that, despite the plane-strain con- 
dition, cavitation was not necessary for large-scale 
matrix yielding. Fukui et  al. as well as Huang and 
Kinloch, also performed a plastic analysis and both 
sets of authors found that shear bands developed 
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Figure 6 Von Mises stress in the equatorial plane (0 = rr for two- 
dimensional approximations of the three-dimensional system of 
a rubber particle in a nylon matrix. ( + ) Void, (�9 E2 = 0.4 MPa, 
Kz = 66.7 MPa (vz = 0.499, rubber properties used by Guild and 
Young), (A) E2 = 0.4 MPa, K2 = 2000 MPa (v2 = 0.49997, as be- 
fore, but with a corrected bulk modulus). (a) Two-dimensional-axial 
symmetric system, (b) two-dimensional plane-strain system. 

under an angle of 45 ~ to the main principal stress. This 
may be caused by the fact that this was also the 
direction where the nearest particle was situated. 

A number of questions still remain unanswered. 
First of all, the studies reported in the literature con- 
cerning particle-filled systems only present solutions 
of systems subjected to a uniaxial load. However, for 
a better understanding of rubber toughening of poly- 
mers, it is more relevant to look at systems subjected 
to a stress state as being present ahead of a notch or 
crack tip, which is highly triaxial. 

Another point of interest is the way in which the 
cavitation zones develop. All the calculations found in 
the literature compare the rubber-filled system with 
a completely cavitated system. Micrographs of de- 
formed blends [9, 14] have 3hown that in stressed 
blends, rows of cavitated particles are formed normal 
to the main principal stress. This suggests that cavita- 
tion of one particle affects the stresses in the surround- 
ing particles in such a way that cavitation occurs 
preferentially in the particle lying in the equatorial 
plane of the cavitated particle. 
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3.1. The f in i te  e lement  model  
The calculations were performed on a VAX micro- 
computer. The software used for the finite element 
calculations was ANSYS. The matrix and the disper- 
sed phase were modelled with a eight-node iso- 
parametric solid two-dimensional element with two 
degrees of freedom (displacement in the x- and y- 
direction). For  the third dimension, plane-strain beha- 
viour was assumed. Linear elastic behaviour was as- 
sumed for both the matrix and the rubber. Owing to 
restrictions of the software used, the number of ele- 
ments for all models was limited to 500. 

Most calculations were performed on a model with 
five particles in a B C C packing. In Fig. 7 the element 
model is given. In the case of a B CC packing, the 
relation between interparticle distance, ID, rubber 
particle size, d, and rubber volume fraction, q~,, is 
slightly different from the relation (for a cubic array) 
given by Wu [-15] and is now given by Equation 4. 
Choosing the rubber volume fraction gives the ratio 
between interparticle distance and particle size in the 
FEM model, given in Fig. 7. 

= - 1 (4) 

In the FEM model, the displacement in the x-direc- 
tion of the left boundary and the displacement in the 
y-direction of the lower boundary is fixed. The upper 
boundary of the model is given a uniform displace- 
ment in the y-direction. The displacements in the 
x-direction of the nodes on the right boundary of the 
model are coupled. The stress state ahead of the crack 
tip is highly triaxial. This stress state is simulated by 
setting the displacements in the x-direction of the right 
boundary to zero. 

The model represented in Fig. 7 has a ratio between 
interparticle distance and particle size corresponding 
to a rubber content of 25 vol %. A similar model was 
generated with a ratio between ID and d correspond- 
ing to a rubber content of 5 vol %. The dotted ele- 
ments are modelled with the elastic properties of the 
rubber. 

The calculations were done with the following elas- 
tic constants for the matrix: G = 1000 MPa, K - -  
5100 MPa. For  the rubber, two different sets of con- 
stants were used: one poly(butadiene)-like material 
with G = 1 MPa and K = 2500 MPa and an LDPE- 
like material with G = 100 MPa and K = 3500 MPa. 

The system was also evaluated with five holes and 
with four particles and a void at the position of par- 
ticle 1. The applied displacement was in all cases the 

same. 

3.2. Results and d iscuss ion  
In Figs 8 and 9, the results are given of the FEM 
calculation on the five-particle model with the poly- 
butadiene-type material as impact modifier. The nu- 
merical solution for the low rubber volume fraction is 
very similar to the analytical solution under similar 
loading conditions. When the two different rubber 
contents are compared, the effect of overlap of stress 
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Figure 7 FEM model of five spherical particles in a B C C packing. The ratio ID/d corresponds to a rubber volume fraction of 0.25. 
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Figure 8 The Von Mises stress and the hydrostatic stress over the lower boundary of the model, relative to the average applied stress on the 
upper boundary, (O, A) before and (�9 A) after complete cavitation for two different loading conditions: (O, �9 Von Mises stress; (A, A) 
hydrostatic stress. Rubber content 5 vol %, rubber properties Gz = 1 MPa, K2 = 2500 MPa. (a) Right boundary of the model is free to 
contract, (b) right boundary of the model is fixed. 

fields is clearly visible. In all cases the stresses in the 
matrix are considerably higher when the rubber con- 
tent is high. 

Also, when the right boundary is free to contract, 
cavitation results in a significant rise in the Von Mises 
stress. As mentioned before, this is caused by the two- 
dimensional plane-strain approximation and this will 
not be the case when the system is calculated using 
a more realistic two-dimensional axial-symmetric 
model. When the right boundary is fixed, there is 
a strong increase in the Von Mises stress, especially 
when the rubber/void concentration is high. 

The hydrostatic stress in the ligament does not 
change much after cavitation when the rubber concen- 
tration is low. For the high rubber content, though, 
there is a distinct rise in the hydrostatic stress when 
the rubber cavitates. 

When the dispersed phase is modelled with the 
LDPE-like material parameters, the solutions ob- 
tained are very similar to those presented in Figs 8 
and 9. This is in agreement with the analytical solu- 
tions presented in Fig. 3. 

In order to investigate whether cavitation of one 
particle causes a preferred growth of cavities in a plane 
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Figure 9 The Von Mises stress and the hydrostatic stress over the lower boundary of the model, relative to the average applied stress on the 
upper boundary, (O, &) before and (�9 ~ )  after complete cavitation for two different loading conditions: (O, O) Von Mises stress; (A, z~) 
hydrostatic stress. Rubber content 25 vol %, rubber properties G2 = 1 MPa, K2 = 2500 MPa. (a) Right boundary of the model is free to 
contract, (b) right boundary of the model is fixed. 
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Figure 10 Hydrostatic tension in particles 2-5 after cavitation of 
particle 1. (- - -) The hydrostatic stress in the particles before cavita- 
tion. The right boundary of the model is fixed. See, for particle 
numbering, Fig. 7 (rubber volume fraction is 0.25). 

perpendicular to the main principal stress, the hydro- 
static stress in particles 2-5 is calculated before and 
after cavitation of particle.1 with an equal applied 
displacement of the upper boundary of the model. The 
results are given in Fig. 10, where it can be seen that 
cavitation of particle 1 causes a decrease in hydro- 
static stress in all the particles except for the particle 
lying in the equatorial plane of the void (particle 2), 
where a slight increase of hydrostatic stress is ob- 
served. From this it can be concluded that indeed 
cavitation takes place preferentially in a plane perpen- 
dicular to the main principal stress. The observed 
effects are, however, small and probably only import- 
ant when cavitation is critical. 

When a cavitated zone of some length is formed, the 
appearance will be quite similar to that of a craze, only 
on a different scale. Thus, the growth of these 
cavitated bands can probably be described in a similar 
way as craze growth, with a maximum in the stress 
concentration on the edge of the cavitated zone. 

4 2 9 2  

4. Conclusions 
Because of the high Poisson's ratio of the dispersed 
phase, the stress state in the rubber will be almost 
perfectly hydrostatic and the height of the hydrostatic 
stress is controlled by the bulk modulus. Owing to the 
fact that the bulk modulus of the rubber phase is of the 
same order of magnitude as that of the matrix, the 
rubber will, despite the low Young's modulus, carry an 
appreciable part of the load. That is why a correct 
choice of the bulk modulus is essential. 

From the literature and our own calculations it 
follows that under a uniaxial load, cavitation is not 
necessary for yielding, because the Von Mises stress in 
the matrix, compared to the applied stress, does not 
change significantly upon cavitation. Also, the hydro- 
static stress is rather independent of the mechanical 
properties of the dispersed phase. Modelling the rub- 
ber with a Young's modulus from very low to relatively 
high values gives similar results. 

However, when the stress state ahead of the notch 
or crack tip is simulated, there is a strong increase in 
the Von Mises stress when the rubber particles are 
replaced by voids while the differences between differ- 
ent types of rubber are still small. This means that 
indeed cavitation is necessary for the formation of 
a large plastic zone ahead of a running crack. Different 
impact behaviour of blends with different types of 
rubber and the same morphology cannot be explained 
from differences in the stress field around the rubber 
particles. 

Cavitation of a particle under constant applied 
strain tends to decrease the hydrostatic stress of the 
surrounding particles, except for the particles in or 
close to the plane perpendicular to the main principal 
stress, where a small rise in hydrostatic stress is ob- 
served. Therefore, cavitation zones grow in a similar 
way to crazes or cracks. 
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